Retrievals and Their Uncertainties:
What Every Atmospheric Scientist and Meteorologist Should Know

D.D. Turner?, G.G. Mace?, U. Lohnert3, K. Ebell3, and ].M. Comstock*

I National Severe Storms Laboratory / NOAA
2 University of Utah
3 University of Cologne
4 Pacific Northwest National Laboratory

Submitted to
Bulletin of the American Meteorological Society (BAMS)
13 August 2013

Corresponding Author:

Dr. David Turner

National Severe Storms Laboratory / NOAA
120 David L. Boren Blvd

Norman, OK 73072

Voice: +1-405-325-6804

Email: dave.turner@noaa.gov

Capsule Statement

Characterizing the uncertainty in a retrieved variable requires understanding the
uncertainties from three different sources.
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Abstract

Remote sensors are heavily used to provide observations for both the operational and
research communities. These sensors typically do not make direct observations of the
desired geophysical variables, but instead retrieval algorithms are used to derive the
desired variables from the observations. It is critically important that our community
understands the underlying assumptions made by many retrieval algorithms, including
that the retrieval problem is often ill-posed and that there are various sources of
uncertainty that need to be treated properly. In short, the retrieval challenge is to invert a
set of noisy observations to obtain estimates of geophysical quantities using imperfect
forward models and imperfect prior knowledge, and the problem is often complicated by

the existence of nonunique solutions.

There are three sources of uncertainties that contribute to the uncertainties of all retrieved
data products: uncertainties in the observations, uncertainties in the dataset used to
develop the retrieval algorithm or constrain it, and uncertainties in the model used to
simulate the instrument observations (called a forward model). These three sources of
uncertainties are discussed and shown how they can contribute to uncertainties in the

retrieval.
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1. Introduction

Science relies on observations to develop theories about nature, and ultimately to
determine if those theories accurately approximate how nature works. In atmospheric
sciences, these observations come from both our natural senses (e.g., our eyes) and from
instruments that we have developed. The sustained development of advanced
instrumentation continues to open new horizons in our understanding about how nature,
including the multitude of processes in our atmosphere, really operates. In fact, instrument
development and scientific advancement typically progress together. As a matter of fact,
there is a strong association between the dearth of observations regarding the cycling of
water through the atmosphere via clouds and precipitation and the difficulty the
community now faces in accurately predicting climate change with cloud processes being
identified as a leading cause of uncertainty in models of the climate system (Dufresne and

Bony, 2008).

A wide variety of in-situ and remote sensing techniques are used to characterize,
understand, and quantify properties and processes that occur in the atmosphere.
Improving our understanding of these processes, and how they interact with each other
and the environment, is critically important to improving our ability to represent these
processes in models (both numerical weather prediction and climate models). For
example, model developers have called on the cloud observational community to close the
gap so that improved parameterizations can be implemented in climate models (Morrison

and Gettleman, 2008).
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In response to this recognized need, our field has seen an explosion in the number and
diversity of remote sensing instrumentation. We are using advanced active remote sensors
such as single- and multi-wavelength lidars, radars of various wavelengths and capabilities,
sodars, scintillometers, and Global positioning systems. We are using passive remote
sensors like infrared spectrometers, microwave radiometers, imaging radiometers that
operate at wavelengths from the visible to the infrared, and beyond. All of these
instruments are taking advantage of various physical laws, many embodied in the
principles of radiative transfer, to gain new insights into the processes in the atmosphere

that tend to move water through the system.

While we have been creative in using remote sensors to observe the atmosphere and
planet, there is a common thread that holds in most of these observations: we are not
actually observing what we want to know. These instruments are measuring a change in
voltage, the number of photons passing into a detector over a certain time period, a
Doppler shift in radar or lidar frequency, and the intensity of the backscattered energy.
What we often really desire to know is the geophysical variable: the ice water content at a
certain altitude or within a certain volume, the temperature profile, the aerosol and cloud
droplet number concentration, etc. Thus, we are left with the problem of extracting the
information we want from observations that are hopefully sensitive to the geophysical

quantity of interest. This inverse process is called a retrieval.
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Very often, if we have a measurement that has some sensitivity to the geophysical variable
we desire, we can compute the signal that we would observe with our remote sensor using
a forward model (Fig 1) that begins with an atmospheric state that includes the geophysical
quantity of interest and reproduces a measurement after various assumptions and
approximations are made. These forward models ideally are based upon first-principles, so
that we have a fair degree of confidence in their fidelity. However, they are often nonlinear,
which makes them difficult if not impossible to invert analytically. Thus, the retrieval
problem is essentially the development of an algorithm that is used to invert the forward
model (F) so that we can derive our geophysical variable that we desire (X) from the
observation that we have made from our remote sensor (Y). (Table 1 provides a brief

summary of the meaning of all symbols used in this paper.)

Graeme Stephens (1994), in his seminal book on remote sensing, provides a classic
illustration of the difference between the forward model and retrieval. Suppose that what
you desire is a description of a dragon, and what you observe are the footprints that the
dragon makes in the sand on a beach. Now, if you already know X (i.e., the dragon’s weight,
size, how it moves, etc.) you can pretty easily describe the tracks it might make in the sand;
in other words, you can develop the forward model and predict the type of observations
that could be made - namely F(X). But if you observe only the tracks in the sand, it will be
much more difficult to describe the dragon in any detail. You will likely be able to tell from
the tracks that the animal wasn’t a deer, for example, by the shapes of the tracks, and

perhaps by the depth of the indentations say something about the size and weight of the



10

11

12

13

14

15

16

17

18

19

20

21

22

23

dragon. But there will be aspects about the dragon that you will be unable to state with any

certainty: if it is male or female, its color, if it has wings, what it ate for lunch, etc.

The retrieval process is complicated by many factors. First, there is the uniqueness
problem. There is no guarantee that there is only a single X that maps to the observation Y;
it is quite possible that F(X) = F(X') = Y where X # X'. This implies that there is a
distribution of states around X that will map to Y, but also the potential of two very
different states mapping to Y. Because of this and because there are often more unknowns
than there are measurements, inversion problems are more often than not ill-posed.
Second, there is no such thing as a perfect instrument; the measurements made by all
instruments have some noise component to them implying that the measurement, Y, can
also be represented by a probability distribution. Third, although the forward models are
often based on first principles, there are still uncertainties within the models: either in the
physics themselves (single scattering properties, for instance) or in the ancillary input
datasets that are needed to drive the model (along with the geophysical variable we desire)
to simulate the observation. Thus, we have to invert a set of noisy observations using an
imperfect forward model where multiple discrete descriptions of the atmospheric state

could reproduce the measurements!

A wide range of techniques has been developed to perform retrievals. There are a number
of good resources available that discuss retrieval theory (e.g., Twomey 1977, Tarantola
2005, Rodgers 2000, Stephens and Kummerow 2007; Aster et al. 2013), and many scientific

disciplines use inversion theory as part of their normal activities. Since retrieved data is
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utilized so heavily in our field for both operational meteorology and research (e.g., satellite
estimates of temperature profiles and cloud properties, weather radar estimates of
precipitation amount and intensity, etc.), it is critical that users of such data streams have
an understanding of the uncertainties in the data products. Furthermore, as we continually
develop more advanced instrumentation and algorithms, it is important that the
uncertainties in these retrievals are accurately quantified and made available with the
retrieved information. Thus, our objective here is to discuss uncertainties in retrievals in
general terms, and suggest where improvements in the quantification of these

uncertainties need to occur.

2.Background on Retrievals

Before we start discussing the sources of uncertainty in retrievals, we need to first start
with some basic background on retrieval methodology. For ease of discussion, we classify

these algorithms into two distinct groups: “regression-based” and “variational-based”.

The regression-based retrieval algorithms develop empirical relationships between the
geophysical variable X and the observation Y using techniques like linear or polynomial
regression algorithms, empirical orthogonal functions, neural networks, and theoretical
relationships between scattering, emission, and transmission with the geophysical
properties of interest (e.g. Nakajima and King, 1990). These are essentially statistical

inferences. Often, a prior dataset of the geophysical observations (i.e., a climatology of
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those observations) is used together with a forward model to simulate the observations
that would be associated with each X. The accuracy of a regression-based retrieval will
depend strongly on the statistical properties of the prior dataset (i.e., the mean X, and the
covariance matrix of the prior dataset Sa) used in the construction of the retrieval relative
to the particular case being retrieved. If the current case is well represented by the prior
dataset (i.e., X is “close” to Xa) then the retrieval will likely be reasonably accurate, but if
the current case is poorly represented in the prior dataset (i.e., X is “far” from Xa) then the
accuracy of the retrieval will likely be low, especially if the forward model is nonlinear. To
use a more concrete example: suppose that only data from the tropics were used to develop
a regression-based retrieval for a satellite sensor. The retrieved variable will likely be
much more accurate when applied to observations taken in the tropics and perhaps not
very accurate when applied to data collected in polar regions. Often regional data sets or
specific cloud resolving model output is used for this purpose. Examples of these
regression-based retrievals include algorithms that relate microwave brightness
temperature (e.g., Conner and Petty 1998) or infrared emission (e.g., Adler et al. 2003) to
rain rate, and algorithms that relate ice water content to millimeter radar reflectivity (e.g.,

Protat et al. 2007).

Variational-based retrieval algorithms exploit the idea, introduced earlier, that
observations, forward models, and the assumptions necessary to drive them have inherent
uncertainty and can be represented by probability distributions. These algorithms
typically use some application of Bayes Theorem (Eq 1), which states that the probability of

retrieving the geophysical variable X given the observation Y is equal to the probability of
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probability that X occurs based upon some prior knowledge (i.e., a climatology, a model
forecast, or a measurement of X at some distinct distance away in time or space). Note that

the denominator in Eq 1 is a normalization factor.

P(Y|X)P(X)
P(Y)

P(X[y)=
Thus, the retrieved value of X is also a statistical solution, but one that combines the prior
knowledge of X (i.e., the climatology) with the forward model P(X]|Y) into a maximum

likelihood solution.

Like regression-based retrievals, there are a wide variety of variational-based retrieval
algorithms. Many of these techniques are described by Rodgers (2000). Variational
methods often are trying to find an optimal solution that minimizes a cost function J (Eq 2)
to get a solution that agrees with (a) the measurementst within their uncertainties (Se) and

with (b) the prior knowledge (Xa) within its uncertainties (Sa).

J=(Y-F(X)) S;'(Y-F(X))+(x-X,) S;'(X - X,) Eq 2

t As will be shown later, the “measurements” include both the observations made by the
instrument that the forward model is simulating and the uncertainties in the forward

model itself.
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Minimizing this cost function is often done in an iterative manner, wherein a guess of X is
compared to Y via the forward model and with the climatological mean Xa; X is then
updated according to some mathematical approach. Typically, the update to X requires
knowing or computing the Jacobian of F with respect to X (i.e., the sensitivity of the forward
model to perturbations of the desired geophysical variable). The retrieval algorithm
continues to update X until the algorithm converges on a point that minimizes J (or the

algorithm has determined that it has diverged and no solution can be found).

An increasingly common approach being used in atmospheric science is optimal
estimation, which assumes that the uncertainties in the prior information, observation, and
model uncertainties are Gaussian and that the forward model is approximately linear
(Rogers 2000) and can be represented by the first derivative of Y with respect to X (i.e., by
the Jacobian of F). If the forward model is nearly linear (i.e. the higher order derivatives
can be neglected), then the forward model can be linearized around some prior state (e.g.,
Xa), and this is adequate to find a solution. Moderately non-linear forward models (and in
atmospheric science many forward models are nonlinear due to the propensity of
exponentials and power laws used within them) can be used in this framework using
Gauss-Newton methods to minimize J, but techniques such as regularization and weighting
approaches (e.g., Carissimo et al. 2005, Turner and Lohnert 2013) can be used to help

stabilize the iterative search and prevent the algorithm from diverging.

10
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An advantage of variational methods is that the uncertainties of the retrieved solution are
typically derived simultaneously since the probability distribution variance of the solution
can be taken to represent the uncertainty, whereas for most regression-based methods
additional equations and approaches need to be derived to estimate the uncertainties (e.g.,
Cadeddu et al. 2009). A disadvantage of the variational methods is that since they are
usually iterative algorithms, they are more expensive computationally than regression-
based methods. This is especially true if the Jacobian of F has to be determined numerically

for each iteration.

3.Sources of Retrieval Uncertainty

Every retrieval algorithm, whether regression based or variational, suffers from the same
fundamental sources of uncertainty such as observational error, forward model error, or
the ill posed nature of the retrieval process. The first, and perhaps most obvious, source of
uncertainty is the uncertainty in the observations themselves. Since the observation is
typically multi-dimensional (i.e., there are observations from multiple channels from a
single instrument, or multiple instruments used in the retrieval), there will be random
uncorrelated error for each particular element of Y, as well as correlated error between the

different elements of Y. This can be succinctly specified in a covariance matrix Sy.

For many instruments, it is easier to estimate the uncorrelated error in each particular

element of the observation. For example, the basic measurement of lidars is typically the

11
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number of photons per range bin, and thus the uncertainty in each bin is usually a Poisson
distributed random error. However, determining the correlated error in a measurement is
typically much harder but can be done; for example, Tobin et al. (2007) have used a
principle component analysis technique to estimate the correlated error in the

Atmospheric Infrared Sounder (AIRS) sensor that is flying on the Aqua satellite.

The second source of uncertainty is associated with the forward model. While forward
models are usually built on first principle understanding, many (necessary) estimations
and approximations still exist and are used either due to limitations in our understanding
of the physics or for computational efficiency reasons. The use of a 1-D radiative transfer
model instead of a 3-D radiative transfer model is one example of an approximation that is
frequently used, even though the 3-D effects are important in most cloud scenes (e.g.,
Pincus et al. 2012, Liang and Di Girolamo 2013, Zhang et al. 2013). Furthermore, the inputs
needed by F often consist of more than just the elements of X. These so-called model
parameters need to be known and their uncertainty will also contribute to the uncertainty
of F. These model parameters can be represented by a vector B and their uncertainty by

the covariance matrix Sp.

The forward model uncertainties are typically ignored in most current retrieval algorithms;
this is equivalent to assuming that the forward model is perfect. However, this assumption
can result in a drastic underestimation of the error in the retrieved X, and for some cases,

ignoring the uncertainties associated with B is the Achilles’ heel of the retrieval itself.

12
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Posselt and Mace (2013) provide a good example of this phenomenon; another example is

shown in Fig 4 of Turner et al. (2007b).

Perhaps one reason why the uncertainties in the forward model are ignored is that many
algorithm developers associate Se = Sy in Eq 2. However, we can easily translate the
uncertainties in B by the forward model into the observation space, and thus combine the
uncertainties of the observations and forward model together. This is done by computing
the Jacobian of F with respect to B, denoted as Kb, and then combining Sy and Sp using this

Jacobian to get the “total measurement uncertainty” Se as

S, =S, +K,S,K! Eq3

A third source of uncertainty is associated with the prior dataset that is used to either build
the regression-based retrieval or serve as a constraint in the variational-based retrieval.
Within the climatology of the desired state vector X, there will be a natural distribution of
values for each element in X as well as correlations between the different elements in X.
Again, if we assume Gaussian statistics we can represent this uncertainty in the prior with a

covariance matrix Sa around the mean climatological state Xa.

The prior dataset serves as a tremendous constraint for the entire retrieval; in fact, the
uncertainty in the retrieval must be smaller than the uncertainty in the prior otherwise the
retrieval does not add any information from the observations. However, if we do not have

a good measure of the variability and covariance of the true atmospheric state, then the

13
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retrieval will not be able to use this information and could easily give a biased result. In
some cases, the prior does not serve as a serious constraint because the information
content in the observations is so high, such as retrieving liquid water path from a
microwave radiometer (e.g., Turner et al. 2007a). However, in some cases the prior
covariance is critically important, such as retrieving liquid water content profiles from a
combination of microwave radiometer and cloud radar observations (e.g., Ebell et al.
2010). And unfortunately, there are some geophysical variables where the Sa matrix is not
well characterized by observations (e.g., such as the vertical level-to-level covariance of
liquid water content), and thus model simulations are used to provide this information in

order to serve as a constraint in the retrieval (Lohnert et al. 2001).

Thus, there are three covariance matrices that must be specified in order to characterize
the uncertainty in the retrieval: Sy, Sa, and Sp. These covariance matrices are combined

together to get the uncertainty of the optimal solution Sep

S, = (s, +KIS7K,) Eq 4

where Kop is the Jacobian of F with respect to the optimal solution Xop. Thus, the
uncertainty of the solution also includes a measure of the amount of sensitivity of the
forward model to changes in the desired geophysical variable. This is an important aspect
that needs to be captured because many instruments can experience saturation effects and
lose sensitivity for some portion of the range of X. For example, a cloud will become

opaque at a particular wavelength if the liquid water path (LWP) becomes large enough,

14
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and thus the radiometer measuring at that wavelength no longer has sensitivity to changes
in LWP for LWP values above that threshold. This is a particularly important but often
ignored issue for infrared and visible spectrum retrievals done either from the ground or

from space.

This discussion has centered upon random uncorrelated and correlated errors, which can
be represented in Sy, Sa, and Sp. However, systematic errors can occur in both F (via B and
with assumptions such at 1-D radiative transfer) and Y. The equations listed above will not
propagate systematic uncertainties into the solution. It is critically important that
scientists developing instruments and forward models perform careful evaluations to
identify and remove systematic errors. Retrievals from a poorly calibrated instrument will
nearly always be suboptimal. One way to evaluate both F and Y for systematic errors
simultaneously is to perform closure studies. A closure study of this type has three
components: the observations that are being evaluated, and forward model and its internal
parameters (i.e., the subset of B that are internal to the model), and the observations that
are needed to drive the forward model (i.e., the remainder of B and the geophysical
variables that are typically retrieved). Delamere et al. (2010) provide an example of an
infrared spectral radiance closure study. In some cases, the separation of B in this manner
results in a separation of the “known unknowns” (i.e., the parameters that are known to
have an impact on F but perhaps are uncertain) and the “unknown unknowns” (i.e., aspects
of F that are uncertain but that the user was unaware of). A well-structured closure study
should be able to identify if there are any “unknown unknowns” and also if there are

systematic errors in the “known unknowns”, F, and Y.

15
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4.Simple Examples

We will use several examples to demonstrate how the uncertainties in Sy, Sa, and Sp impact
the uncertainties in Sop. While we could have chosen from a wide range of retrievals used
in atmospheric science, we have chosen a simple example that is straightforward to
illustrate and hopefully easy to understand. In this problem, we fit a Gaussian-like curve,
defined by Eq 5, to an observed distribution of values over a fixed resolution axis z. Like

many forward models used in atmospheric science, this model is moderately nonlinear.

z—RY
F = NeXp{{VJ ] Eq5

In our examples (Figs 2 and 3, and online supplementary figures S1-54), we create sensor
measurements (i.e., observations) of a true distribution described by Eq 5 and then, for
various assumptions of the values in Sy, Sa, and Sy, retrieve the parameters of the model N,
R, and W (i.e., our desired geophysical variables) that describe the true distribution as well
as the uncertainties in these parameters. To help visualize the solution, we will use F (i.e.,
Eq 5) to translate the retrieved solution back into the observational space. This example,
while simple, has practical applications also: for example, Miles et al. (2000) essentially
retrieved N, R, and W from a large set of in-situ cloud droplet size distribution observations

in stratus clouds.

16
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The true distribution is given by N=300, R=60, and W=10 (black curves in panel A in Figs 2,
3, and S1-5S4). The observation (green curves) was created from this true distribution by
applying a uniform random error (i.e., same uncertainty for each bin element z) and
assuming that the errors in the observations are uncorrelated; the same observation will
be used in all of these examples. These examples are designed to illustrate how changes in
Sy, Sa, and Sp, where the latter implies uncertainties in F, impact the solution Xop and its

uncertainty Sop.

a) Perfect model

The first example illustrates a “perfect model” case where the state vector X=[N, R, W] and
there are no unknown parameters in F. The assumed prior distribution X,=[200, 50, 15],
with 1-0 uncertainties of 200, 20, and 5, respectively. We assumed that there was no

correlation between N, R, and W in the prior, resulting in

Fifty observations where made of this distribution (green curve), with an observation at
every even value of z. The assumed 1-0 uncertainty in the observations is 100; thus Sy is a
diagonal matrix with values of 1002 along the diagonal. Since F is a perfect model, Sp=0

resulting in Se=Sy. The retrieval used an optimal estimation approach (Rodgers 2000) to

17
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minimize the cost function J (Eq 2) and derive Xop, with the uncertainty of the solution

computed using Eq 4.

The retrieved solution in observation space (i.e., as F(Xop)) is shown in Fig 2A, with the
retrieved values and the 1-o uncertainties listed in the inset black box (along with the truth
and assumed prior values and uncertainty). In this case, the retrieved values are N=266.9 +
43.4,R=60.8 * 1.6, and W=11.4 £ 2.0 where the 1-0 values were computed from the square
root of the diagonal elements of Sep. This successful retrieval shows the retrieved values

agreeing with the truth within the uncertainties of the retrieval.

However, there is also some correlation in the uncertainty of the different elements in the
retrieved Xop: the Pearson correlation coefficient r between N and W is equal to -0.53 and is
due to off-diagonal elements in the Jacobian Kop (i.e., due to the forward model
correlations). The correlated error between the other pairs of parameters (N and R, and R
and W) is zero; again, this lack of correlation is due to the forward model. Since Xop
specifies the most probable solution between the observations and the prior, it is useful to
visualize the range of solutions that lie within its uncertainty Sop. We did this by sampling
Sop (as well as Sa and Se) using a Monte Carlo technique (Tarantola 2005), and then
translating these results back into the observational space with F (Fig 2B). The “flattening”
(or the plateau) of the blue trace in Fig 2B is due to the correlation between N and W in Sep.
Also, note that the uncertainty in the solution is much smaller than the uncertainty in the
prior; in the case where the observations add no information on the state vector then the

uncertainty in the solution would be the same as the prior’s uncertainty. The online
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supplemental material illustrates how the solution and its uncertainties change as the

magnitude of uncertainty in the observations (i.e., Sy) changes (example S1).

b) Imperfect model

The previous example assumed that the model is perfect and that there are no uncertain
parameters within the model. However, this is not typical as forward models often are
quite complex. Thus, we will assume that one of the three parameters in our forward

model (i.e.,, one of N, R, and W) is now a model parameter with some uncertainty.

We will assume that W is the model parameter and fix its value to W=15+5. Thus, the true
W is within the uncertainty of the model parameter, but they are not the same (i.e., the
model has some bias). This implies that Sy = 52 (i.e., a scalar in this case), and thus Se will
have contributions from both Sy and Sy (Eq 3). The retrieval will then solve for X=[N, R]. In
this example, the assumed Sy is 4x smaller than that shown in Fig 2, but is the same as the

S1 case in the online supplemental section.

The retrieved solution and its uncertainty are shown in Fig 3. There are several differences
between the solution here and the perfect model solution (Fig 2). First, it is clear that the
derived distribution (i.e., F(Xop)) for the imperfect model does not agree as well with the
truth as when the perfect model was used in the retrieval. This will be true for all cases
when a biased forward model is used. However, the retrieved values of N and R do agree

within 2-o of the true values.

19
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However, there is also a striking difference in the combined observational and forward
model uncertainty (green curve, derived from S.) between Fig 2B and Fig 3B. The
“enhancement” to this total measurement uncertainty (i.e., its double-peaked feature,
relative to its shape in Fig 1) is from the uncertainty in the forward model parameter W.
Note that as the state vector evolves during the iterative retrieval, the observational
uncertainty also evolves; this is because the Jacobian with respect to B (i.e., Ky in Eq 3)
changes as X changes. This results in a more broadly distributed uncertainty in Sop (blue

curve in Fig 4B) that has a less pronounced plateau than that exhibited in Fig 2B.

Additional examples using an imperfect model that show the impacts of a change in the
prior uncertainty (S2), a different imperfect model (S3), and using a significantly smaller

number of observations in the retrieval (S4) are included in the online supplement.

5. Example Retrieving Liquid Water Content

The examples above and in the online supplement illustrate how changes in the
uncertainties in the observations, prior dataset, and forward model impact the
uncertainties in the retrieval; however, the forward model/retrieval problem was highly
simplified to illustrate these points. Here, we use a real-world retrieval problem to

illustrate these same points.

Millimeter-wave cloud radars have been deployed at many locations worldwide to provide

observations of macro- and microphysical cloud properties that can be used to develop
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cloud climatologies, evaluate and improve processes within cloud-resolving model
simulations, provide inputs needed for radiative transfer calculations, and more. One of
the primary observations from these radars is radar reflectivity (Z), and many retrieval
algorithms have been developed to retrieve profiles of liquid water content (LWC) from the
observed profiles of Z. We will use the simplified approach of Brandau et al. (2010) in a
variational framework to evaluate how uncertainties in Sa, Sy, and Sp impact the

uncertainty in the retrieved LWC (i.e., Sop)-

The Brandau algorithm assumes that the cloud droplet size distribution is mono-modal
with a generalized gamma size distribution, and that the cloud is homogeneously mixed
and thus the number concentration of cloud droplets (Ng) is constant with height. Their

forward model computes LWC (at some height) from Z using

[ 2 f o
Lwe == ((V+3)(v+4)(v+5)) Niz Bq 6

where py is the density of liquid water and v describes the slope of the gamma size
distribution. In this example, we treat N; and v as model parameters and retrieve LWC

from Z.

Since the errors depend on the particular state of the atmosphere, we assume that the true
atmospheric state has LIW(C=0.1 g m3, N4=500 cm-3, and v = 8.7. [The value for v was

determined by Brenguier et al. (2011) from in situ measurements in stratus clouds, and has
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an uncertainty of approximately 3.] Using these values of LWC, Ny, and v yield a radar

reflectivity value of -37 dBZ, which is very typical of non-drizzling stratiform warm clouds.

Figure 4 shows the impacts of 1-o0 uncertainties in Ng, Z, and Sa on the uncertainty in LWC.
For this example, we've assumed X,=0.1 g m3 and that the 1-0 uncertainty in this prior is
both 100% and 30% (open squares and filled circles, respectively). The uncertainty in the
retrieved LWC is computed over a range of uncertainties in Z (from perfect observations
with no uncertainty in red to relatively poor observations with 1-o uncertainty of 3 dBZ in
brown). In these retrievals, the uncertainty in the model parameter Ny is changed from
perfect knowledge (0 cm3) to 60% error (300 cm3). Figure 4 demonstrates that the
uncertainty in the forward model parameter Ny dominates when the uncertainty in Z is
small, but that as the uncertainty in the Z observations increases it begins to dominate the
uncertainty in the retrieved LWC relative to the uncertainty in No.. However, if the
uncertainty in the prior value of LWC is smaller (filled circles), then the uncertainty in Ng
becomes less important. Thus the importance of a source of uncertainty depends on the

other two sources of uncertainties in the retrieval.

6. A Classification Conundrum

There is a fourth source of uncertainty that affects many retrieval algorithms. Many
retrieval algorithms are designed for particular conditions; for example, single-layer ice-

only clouds, non-drizzling clouds, dust-laden aerosol layers, etc. This is often because
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either (a) the forward model is accurate only in these particular conditions or (b) the
forward model is very sensitive to other geophysical variables but that there is either poor
constraint in the prior on these variables or they are highly correlated with other elements

in the state vector.

To overcome this limitation, the scene must be classified to determine if the conditions are
appropriate for the forward model assumptions used in the given retrieval algorithm.
These classification algorithms use many of the same datasets used in the retrieval
algorithms themselves, and indeed are just a form of a retrieval algorithm. For example,
there has been a wide range of algorithms developed (e.g., lllingworth et al. 2007, Pavolonis
et al. 2005, Shupe 2007). However, the output of these algorithms is typically discrete; for
example, in the case of the Cloudnet algorithm each radar / lidar range bin is classified as
an aerosol layer, a precipitation layer, liquid cloud layer, ice layer, etc. (Illingworth et al.

2007).

In some cases, classification algorithms may assign probabilities instead of discrete values.
For example, the cloud mask algorithm of Frey et al. (2008) uses four confidence levels to
indicate the likelihood of a MODIS pixel being non-clear (i.e., some obscuration in the field
of view by cloud). The phase algorithm of Riedi et al. (2010) provides a continuous index

to describe cloud phase likelihood using combined MODIS and POLDER observations.

Regardless, classification assignments need to be included as an importance source of

uncertainty in the subsequently retrieved geophysical variables. Therefore, methods need
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to be developed to propagate classification uncertainties through the retrieval algorithm
itself. Propagating uncertainties in discrete variables that are used as input to another
retrieval algorithm requires some careful thought and evaluation. One possible way
forward is to incorporate the classification and cloud retrieval into a single algorithm;
another option is to use Monte Carlo techniques to propagate the uncertainties in the
discrete classification algorithms into the final geophysical variables. In either regard, the
uncertainty in the scene classification and the potential to apply a retrieval algorithm to a

scene for which it was not applicable is a huge source of uncertainty in the retrieval itself.

7.Conclusions

In summary, most of the observations we use to view the Earth-atmosphere system are
from remote sensors and these observations are used in a wide range of both operational
and research applications. These sensors include all satellite observations, weather radar
observations and many more. In all of these cases, geophysical variables are retrieved from
the observations using an algorithm that inverts, in some sense, the measurements that are
a function of the geophysical parameters to arrive at an approximation of those parameters
of interest. The uncertainties in these retrieved quantities arise from three sources: the
climatological (or prior) dataset used to either construct or constrain the retrieval, the
uncertainties in the forward model assumptions and input ancillary datasets used in the
forward model, and the uncertainties in the observations themselves. The covariance
matrices Sa, Sp, and Sy characterize these three sources of uncertainty, respectively. These
uncertainties, together with the sensitivity of the forward model to perturbations in the

model parameters B and the atmospheric state X, can be propagated to provide
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uncertainties in the retrieved atmospheric state Xop as the covariance matrix Sop. We have
utilized the variational retrieval method to propagate these uncertainties in a series of
examples to show the impact of how changes in these uncertainties result in changes in the
retrieved state vector Xop and Sop. These same conclusions can also be shown using

regression-based retrieval methods (e.g., Lohnert and Maier 2012).

We contend that more work is needed to accurately characterize these three input
covariance matrices. Too often, our community assumes that the measurement covariance
matrix Sy is diagonal and that there is no correlation between different measurements
within the observational vector Y. We challenge instrument developers to devise methods
to test this assumption, and for scientists that develop retrievals to include the results from

these tests in their algorithms.

The prior dataset is absolutely critical for the development of regression-based retrievals
and to serve as constraints in variational-based retrievals. However, in many cases, the
climatology used to develop Xa and Sa is inadequate or must be estimated from other
sources such as model simulations. For example, ice crystal mass-dimensional and area-
dimensional relationships are a critical component for many ice cloud retrieval algorithms
(as well as for parameterizations in cloud resolving, weather, and climate models).
However, due to recently discovered shattering of ice crystals by the in-situ probes (e.g.,
Korolev and Isaac 2005, Lawson 2011), it has been argued that many of the older in-situ
datasets have biases that cannot be removed and thus an extensive new dataset needs to be

collected in order to define Sa. Furthermore, as these ice particle properties are likely
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correlated with height (temperature), these new datasets should be collected in a manner
to quantify these correlations so they can be captured within Sa. There are many other
examples where improved prior datasets would greatly benefit the retrieval community.
We challenge the in situ observational community to analyze their data in such a way as to
define correlations between and among the various parameters they observe and derive.
Without these correlations, the retrieval community is left to either assume what these

correlations are or to ignore the correlations entirely.

Lastly, we believe that the retrieval community has neglected the uncertainties and
assumptions in the forward model parameters for too long. Forward models may be
fundamentally incorrect (e.g., applying 1-D radiative transfer approaches to scenes that are
inherently 3-D), or may have uncertainties with a parameter within the model. The
potential impact of uncertainty in the forward model parameters was illustrated in the
examples shown here. In some applications, the uncertainty in B dominates the
uncertainty in the observations, and potentially of the retrieval. This is especially true in
ice cloud and ice precipitation retrievals where particle mass and area are a function of ice
crystal habit. Realistic uncertainties in mass and area-dimensional relationships (Sb)
dominate over the observational error (Sy) in the total measurement uncertainty (Se), and
result in very large uncertainties in the retrieval (Posselt and Mace 2013). Characterizing
the uncertainties in F may require additional in-situ data (much in the same spirit as
improving the prior datasets) and supporting data so that closure studies can be
performed. Thus, a well-constructed set of field campaigns may be able to improve the

characterization of both S, and Sp simultaneously.
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Online Supplemental Material

We have included a few additional cases that use the Gaussian distribution forward model
(Eq 5) to illustrate how changes in the forward model and the assumed uncertainties can
impact the retrieval and its uncertainty. The IDL code that generated these examples, as

well as the examples in the paper, are available by request from the first author.

i) Perfect model with Decreased Observational Uncertainty

So what happens if the noise in the observations is decreased (i.e., Sy values are reduced) in
the perfect model case? To evaluate this, we decreased the assumed noise level in Sy by a
factor of 4 but all other parameters in the retrieval were the same as those shown in Fig 2.
The retrieved Xop (Fig S1) still agrees with the true parameters within the 1-o uncertainties
of the retrieval; however, these uncertainties are now much smaller than the case shown in
Fig 2. This is shown both in the 1-0 values in the inset box as well in as the much smaller
values of the solution uncertainty (Sop), which was transferred back into observational
space as shown in Fig S1-B. Again, there is correlated error between the retrieved N and W
(r =-0.57), which results in the flat top of the posterior uncertainty trace (blue curve in Fig

S1-B).

ii) Retrieving N and R with a modified prior and an imperfect model

Suppose, however, that the uncertainty in the prior (i.e., Sa) is changed - what is the impact
on the retrieval? This change in the prior may result (for example) because the original

prior was determined from an annual climatology, and a decision was made to use data for
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a specific month in the prior in order to reduce the uncertainty in the constraint. This case
is identical to the imperfect model case in the paper (i.e., Fig 3) except that the 1-o value for

R in the prior is 1.0 instead of 20.0.

Comparing these results (Fig S2) with those from the original prior (Fig 3) shows a very
noticeable change in the distribution of the prior and its uncertainty. However, the impact
on the retrieved Xop is small, with F(Xop) shifting leftwards towards smaller bin values (Fig
S2-A). The retrieved value of N is essentially unchanged, but the retrieved value of R is
shifted slightly towards the mean value of the prior (50) and is no longer within 2-c of the
true value of R. This shifting is due to the algorithm optimizing the solution to minimize
the cost function J within the uncertainties of both the prior and the observations, and since
there is less uncertainty in the prior than the previous example it has more “pull”. There
are also small changes in the uncertainty of the retrieval (Fig S2-B), with the uncertainty

also shifted slightly leftwards towards smaller bin values.

If an even smaller uncertainty in Sa was specified, the effect would be larger. If, in the
extreme, the 1-0 uncertainty in R used in Sa was set extremely smallt (e.g, several orders of
magnitude smaller than the value), then the retrieval would not be able to modify this value

and it would be effectively fixed to the prior’s value specified in Xa. This, in essence,

t The 1-0 uncertainty for any element in Xa and Y (i.e., the diagonals of Sa and Sy) must be
larger than zero, otherwise the associated matrices Sa and Se would be ill-defined and the

inverse could not be computed.
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reduces the dimensionality of the retrieval and can be quite useful if other observations
provide a tight constraint on one or more elements of the state vector. However, to
properly compute the error in the retrieval it is important that the uncertainty in the prior,
which is capturing the variability of this geophysical variable in nature, be properly
specified within the framework of the retrieval otherwise it is possible to over- or under-

constrain the retrieval resulting in a biased Xop and Sop.

iii) Retrieving N and W with the original prior and an imperfect model

The imperfect model examples shown in section 4.b of the paper and case (ii) above
retrieved both N and R, which had uncorrelated uncertainties in the posterior (i.e.,
solution) in the perfect model cases (i.e., section 4.a and case (i) above). The uncertainties
in these variables were also uncorrelated in the imperfect model examples. However, the
uncertainties in N and W were correlated in the perfect model case, so this example will

use R as a model parameter and retrieve N and W.

Figure S3 shows the retrieved solution and the uncertainties when we assume R is the
model parameter with a value of 50+20 (as was the same as the uncertainty in the prior for
R in the previous examples). This example shows the poorest agreement between the
solution and the truth, with F(Xop) not capturing the peak of the true distribution nor its
placement in the proper z bin, because the forward model was unable to move the peak of
the distribution with R held as a model parameter. Thus, the retrieved values of N and W
do not agree with the truth at all, yet the retrieval was considered converged within the

uncertainties of the observation and the prior. This is largely due to the much larger
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combined observational and forward model error (Se), which is due to the large inflation
that resulted from the model parameter uncertainty Sp. The posterior uncertainty also has
the largest spread in bin number (i.e., along the z-axis, with non-negligible values from bin
15 to bin 85) although the magnitude of the uncertainty isn’t very large. Again, there is a
reasonably large Pearson correlation coefficient between the retrieved N and W, with Sep

suggesting that r = -0.57.

This example also demonstrates conclusively the importance of evaluating, and potentially
improving, forward models relative to observations. In this case, there is a significant bias
between the true value of R and the value used in the forward model. Systematic errors
such as this are unable to be quantified by the covariance matrices: Sa, S», Sy, and

consequently Sop only captures random and correlated errors.

iv) Retrieving N and R using fewer observations using an imperfect model

In all of the previous examples (Fig 2, 3 and S1-S3), the number of observations was 50,
which is much larger than the number of variables that were being retrieved (2 or 3, in
these examples). Thus, these examples are cases where the retrieval is over-constrained,
especially since the observational errors are uncorrelated and have good sensitivity to
changes in the forward model. However, it is much more common for the problem to be
under-constrained (often severely so) where the number of independent pieces of
information in the observations is less than the number of variables we are trying to

retrieve. For example, it is typical to use hundreds of spectral infrared observations to
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retrieve temperature profiles at ~50 atmospheric levels, yet there may only be a few
independent pieces of information in the infrared spectra - certainly much fewer than the

number of levels that are being retrieved (e.g., Turner and Léhnert 2013).

To illustrate a more realistic retrieval, we reduce the number of observations taken of the
true size distribution from 50 to 4, where we only sample at bins 0, 33, 66, and 99 instead
of every even numbered bin along the z-axis. We then retrieve N and R using the imperfect
model where W is a model parameter. This is essentially the same retrieval shown in
section 4.b in the paper, only where fewer observations were used. The results (Fig S4)
demonstrate much larger bias and uncertainties in the retrieved values of N and R when
fewer observations are used in the retrieval; for example, the bias error in the retrieved N
is nearly 30% with an uncertainty in the retrieved N of over 60%. Furthermore, there was
no correlated error between the retrieved N and R when 50 observations were used, but
when only 4 observations are used in the retrieval the correlated error between N and R is
-0.82. This significant change in the error in the retrieved solution is because there are
only 1.5 degrees of freedom of signalt in this example, which implies that there is less

information in the observations (1.5) than we are trying to retrieve (2; N and R).

t The degrees of freedom of signal (DFS), which is equivalent to the number of independent

pieces of information in the observations, is the trace of the averaging kernel A, where A is

derived from the Sop, Kop, and Se matricesas A=S, K, S.'K,, (Rodgers 2000).

ope
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Table 1: Summary of the symbols used

Notation \ Meaning \ Notes
Vectors
. e.g., measured spectral reflectances
Y Observations (m elements) &» M p .
or radiance, radar reflectivity, etc.
X state quantities (n elements) unknowns to be retrieved
maps X to Y, e.g, radiative transfer
F(X) forward model (m) model using ancillary datasets
and/or assumed model parameters
Xa state a priori (n) e.g., climatology
Xop optimal state given the observations (n) | the solution of the ‘retrieval’
B model parameters (k)
Matrices
Sy covariance of Y (m x m) Uncertainty in the observation
Sa covariance of Xa (n x n) Uncertainty in the a priori
Sb covariance of B (k x k) Uncertainty in the model parameters
Uncertainty in the total
: . measurement (observational
covariance of Y + covariance of B . .
. : : uncertainty plus simulated
Se mapped into observation space via Kp :
observation by the forward model).
(mxm) . .
This assumes no correlation between
the Y and B error sources
Sop covariance of Xop (n x n) Uncertainty in the retrieved solution
Kb Jacobian of F w.r.t. B (m x k) Elements dFi/dB; given Xop and B
Kop Jacobian of F w.r.t. Xop (m x n) Elements dF;/0Xop; given Xop and B
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Forward Model
F

Geophysical Variable Radiance or Backscatter
(What we want to know) (What we observe)

Retrieval

Figure 1: Illustration of the forward model / retrieval problem. Note that the geophysical

variable space and observational space are typically multi-dimensional (i.e., we desire to

retrieve n geophysical variables from m observations, where n typically does not equal m).
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Retrieving N, R, W (Case 2)
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Figure 2: The “perfect model” case in where there are no unknown parameters; the entire
model is described by the state vector X=[N, R, W]. Panel A shows the true size distribution
(black), the noisy observations (green), the prior distribution (red), and the retrieved
solution (blue), where the latter two cases are translated from the state vector space to
observational space by F. The error bars are the 1-0 uncertainties that are derived from a
Monte Carlo sampling of the Se, Sa, and Sop matrices, respectively. The values in the inset
box indicate the true, prior, and retrieved values of the three state vector parameters, with
the 1-0 uncertainties in parentheses. Panel B shows the 1-0 uncertainties, again in the
observation space, derived from the Monte Carlo sampling of Se (green), Sa (red), and Sop
(blue). Since there are no unknown parameters in this perfect model, Se = Sy and Sp=0,

which is why the green line in panel B is flat.
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Retrieving N, R (Case 1)
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Figure 3: Similar to Figure 2, but using an imperfect model where W is a model parameter
with some uncertainty and the state vector being retrieved is X=[N,R]. The model
parameter and its 1-o0 uncertainty are in brown in the inset box. The uncertainty in the
observations (Sy) is also 4x smaller than that used in Fig 2 (i.e., the same uncertainty as in
online supplemental Fig S1). Note that the uncertainty in the observations (derived from

the Se matrix) now has contributions from both Sy and Sp.
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Fig 4: The uncertainty in the retrieved LWC as the uncertainty in the model parameter Ny
(x-axis), radar reflectivity observation uncertainty (green box), and prior uncertainty (red

box) are changed. The retrieved LWC was 0.1 g m-3 using Ns = 500 cm3 and Y=-37 dBZ.
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Retrieving N, R, W (Case 1)
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Figure S1: The same as Figure 2, except that the uncertainty in the observations (i.e., Sy)

was assumed to be 4x smaller.
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Retrieving N, R (Case 2)
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Figure S2: The same as Figure 3, except that the uncertainty in R in the prior is 20x smaller.
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Retrieving N, W (Case 1)
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Figure S3: Similar to Figure S2, but using an imperfect model where R is the model
parameter with some uncertainty and the state vector being retrieved is X=[N,W]. Note
that the uncertainty in the observations (derived from the Se. matrix) again has

contributions from both Sy and Sp.
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Retrieving N, R (Case 3)
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Fig S4: The same as Fig 3, except that the number of observations was decreased from 50 to
4 (i.e, from an observation every 2md bin to every 33rd bin). In this example, the
observations are almost exactly matched by the solution (which was translated into the

observational space).
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